
ARMY RESEARCH LABORATORY

I ■•■*»;:»«*« v.:*K.y*(iÄ

Performance Metrics for
Parallel Systems

by D. M. Pressel

ARL-TR-2145 January 2000

Approved for public release; distribution is unlimited.

20000214 042
pTIC QUALITY INSPECTED 1

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.

Abstract

One frequently needs to compare the performance of two or more parallel computers, but
how should this be done? The most straightforward way to do this would be to rely upon a suite
of benchmarks. Unfortunately, there are many problems and limitations with this approach.
Therefore, one is frequently forced to rely upon a combination of approaches. Unfortunately,
many of the alternative approaches are all too frequently based on excessively simplistic
approximations and extrapolations. This report discusses some of these issues so that the
problems they can cause may be avoided in the future.

11

Table of Contents

Page

List of Figures v

List of Tables v

List of Examples v

1. Introduction 1

2. Reviewing the Metrics 3

3. How Long Will It Take for My Job to Run? 5

3.1 Ideal Speedup 5
3.2 Linear Speedup 8
3.3 Maximum Speed 10

4. What Is the Overall Turnaround Time for the Job? 11

5. Conclusion 13

6. References 15

Glossary 17

Distribution List 19

Report Documentation Page 23

111

INTENTIONALLY LEFT BLANK.

IV

List of Figures

Figure Page

1. Predicted Speedup for a Loop With 15 Units of Parallelism 7

2. Performance Results for the One-Million-Grid-Point Data Set 8

List of Tables

Table Page

1. Predicted Speedup for a Loop With 15 Units of Parallelism 7

List of Examples

Example Page

1. Sublinear Ideal Speedup 6

INTENTIONALLY LEFT BLANK.

VI

1. Introduction

It is frequently necessary to compare the performance of two or more parallel computers. While

in theory this might seem like a simple enough proposition, the reality is that it is far from being

simple. Let us assume that the most logical approach is to rely upon a suite of benchmarks based

on the expected work load. How should the benchmarks be selected? We have already said that

they were to be based on the expected work load, but what does this mean? Some sites have very

steady work loads that slowly evolve over time; however, many sites will see significant variations

in the work load from month to month. Additionally, most sites have a collection of jobs that they

would like to run, but which either cannot be run on their current systems, or at best can only be ran

as a demo run in dedicated mode.

Continuing to look at this problem in greater depth, two additional problems come to mind:

(1) The benchmark suite has to be runable on the available benchmarking hardware. In other

words, while most vendors have one or more systems that they use for running benchmarks, in

general, these systems are not maxed-out configurations. Furthermore, there is competition for these

systems, so in general, there will be some reluctance on the part of the vendors to run benchmark

suites that take more than a few days to run. This point becomes even more important if the suite

needs to be run more than once (e.g., to judge the effectiveness of tuning the code and/or the

hardware configuration). This may make it particularly difficult to benchmark extremely large, and

presumably highly scalable, jobs to see if the largest configurations perform as promised.

Note: This work was made possible through a grant of computer time by the Department of Defense (DOD) High
Performance Computing Modernization Program. Additionally, it was funded as part of the Common High
Performance Computing Software Support Initiative administered by the DOD High Performance Computing
Modernization Program.

Note: Definitions for boldface text can be found in the Glossary.

(2) What should the benchmark code look like? If one supplies source code and rules concerning

what can be done to it, that very action can adversely impact the performance of the code on some

systems. For example:

• Vector optimized code will, in general, perform suboptimally on RISC-based platforms.

• Code that has already been parallelized might have been done so based on certain assumptions

about the computer's architecture. For example, it might have been written in CM-Fortran and

targeted at the CM-5 made by Thinking Machines. Such a program can in theory be

transformed into HPF. In theory, such a program is highly portable. The reality can be quite

different, and even when the program is "portable," this says nothing about its performance or

cost effectiveness.

• Even if message-passing code that has been run on an early RISC-based system (e.g., the Intel

Paragon) is supplied, the tuning of the code may be suboptimal. For example, the programmer

might have assumed that 1-10 MFLOPS were good. Given a peak per-processor

interprocessor communication rate of 100 MB/s, this is likely to result in a favorable ratio

between communication and computation. However, if one switches to a processor where the

expected performance is in the range of 50-200 MFLOPS, then it is unlikely that the ratio

between communication and computation will still be as favorable. In particular, the latency

of interprocessor communication is likely to be much more important.

The Numerical Aerodynamic Simulation (NAS) group at NASA Ames Research Center came

up with an alternative approach. Version 1 of the NAS Parallel Benchmarks (NPB1) was based on

paper and pencil descriptions of the algorithms. It was up to individual vendors to write their own

codes from scratch and to optimize them in almost any way they saw fit. The only requirements

were that they could not change the algorithm and that the results had to pass certain tests. While

this approach has the decided advantage of allowing the vendors to show off their wares in the most

favorable light possible, it turned out that in many cases this light was much too favorable.

One final note on this topic is that so far we have been requiring the vendor to use a specific

algorithm. The problem is that not only is vector optimized code suboptimal for RISC-based

architectures, but it may also be difficult to parallelize. In particular, it may have a limited amount

of available parallelism. For this and other reasons, there may be a strong benefit to using a

combination of Loop-Level Parallelism and Shared Memory SMPs when trying to parallelize such

a code. On the other hand, if one sticks to algorithms that are known to perform well on current

MPPs, one may be accepting a significant decrease in the algorithmic efficiency and, therefore, the

delivered performance. Such a hit may be unavoidable if one is committed to using MPPs; however,

these considerations demonstrate why it can be easy to underestimate the value of a Shared Memory

SMP such as the SGI Origin 2000.

The rest of the report discusses some commonly used metrics that are frequently used to

supplement, or even replace, benchmarking as the basis for procurement decisions.

2. Reviewing the Metrics

When discussing metrics for any form of High Performance Computing with the user

community, four metrics are commonly mentioned:*

(1) Does the machine have enough (usable) memory to run my job?

(2) How long will it take for my job to run?

(3) What is the overall turnaround time for the job?

(4) Can I use my favorite algorithm on the new computer?

* "Programmers should always look for the best available algorithm (parallel or not) before trying to scale up the 'wrong'
algorithm. For folks other than computer scientists, time to solution is more important than linear speedup"[l].

The first metric is, in general, fairly simple to evaluate. Either the machine has enough memory,

or it doesn't (and one would have to use an out-of-core solver). In reality, things can be a bit more

complicated since some combinations of computer architecture and software will result in some or

all of the data being replicated up to N times, where N is the number of processors being used.

Additionally, some architectures will favor the use of additional arrays (possibly for scratch

purposes, or alternatively to hold the transpose of another array), which can also increase the memory

requirements. Even so, it is, in general, fairly simple to predict if a job will fit in the memory of a

certain machine.*

The second metric is the one that seems to be most frequently discussed by the software

developers, although it is this author's experience that most users are more interested in the third

metric. Sections 3 and 4 discuss these metrics in greater detail.

The fourth mefric is discussed in Pressel et al. [2]. Therefore, this metric is not discussed in great

detail. The important point of the fourth metric is that some algorithms are easier to port to some

system architectures than others. Li particular, some of the most efficient serial algorithms are

relatively easy to port to vector-based and/or Shared Memory SMPs. At the same time, they can be

much more difficult to port to traditional Distributed Memory MPPs. As such, the choice of

hardware can in some cases limit the choice of algorithm and in so doing negatively impact the

observed results for the second and third metric. This can be a particularly important point when

deciding how strongly to stress the concept of portability for software development projects.

* It is important to keep in mind that on a distributed memory architecture, the memory requirement will frequently set
the lower bound on the number of processors that can be used for a certain job. Historically, distributed memory
architectures were configured with limited amounts of memory per processor. As a result, one was sometimes forced
to use more processors than were optimal for a particular job, just to have enough memory to run that job at all. While
this is in general less of an issue today than in the past (i.e., some distributed memory systems are now equipped with
1 GB of memory per processor), the issue has not gone away entirely (e.g., as late as 1996, the default configuration
for the Cray T3E was 64 MB per processor) [3,4].

3. How Long Will It Take for My Job to Run?

While the second metric deals with the run time for a complete job, rarely will one see

presentations based on run time for the complete job. While there are several reasons for this, the

most common is that it takes too much computer time to obtain fully converged solutions. This is

especially the case if one wishes to use this metric to measure performance as a function of the

number of processors used. For simulations that have the concept of a Time Step (e.g., runs

involving CFD), a common solution to this problem is to assume that it takes a fixed number of time

steps to solve the problem (unfortunately, this is only an approximation whose validity is sometimes

left unresolved) [1]. Given this solution, one can then stick to comparing the performance based on

calculations involving a relatively small number of time steps. The down side to this is that start up

and termination costs will now skew the results. The solution to this problem is of course to use

some method to remove these costs from consideration (the assumption being that they will not be

excessively large when running the complete problem).

If the simplifications were to stop at this point, we would, in general, still be on fairly solid

ground. Unfortunately, that is rarely the case. Instead, several different approaches are frequently

applied to simplifying this metric even further, and it is highly questionable if any of these

approaches can be justified except by the claim of expediency. Let us briefly look at some of these

simplifications and see where the problems are.

3.1 Ideal Speedup. Most textbooks on parallel programming talk about the ideal speedup as

being linear speedup. They then go on to talk about how the performance will deviate from linear

speedup as the result of Amdahl's Law, the costs associated with interprocessor communication, etc.

They may also talk about scaled speedup [5]. However, while for obvious reasons it is desirable to

have linear speedup as the ideal speedup, some approaches to parallelization can result in distinctly

nonlinear speedup for the ideal speedup (see Example 1).

• Example 1: Sublinear Ideal Speedup.

If one has a code that is vectorizable but difficult to parallelize using message-
passing code (e.g., many Implicit CFD codes fall into this category), then the most
appropriate way to parallelize the code might be to use loop-level parallelism (e.g.,
OPENMP). However, if one assumes that the number of processors being used is within
a factor of 10 of the available parallelism (an assumption that will in general be true
when working with 3-D problems and 32 or more processors), then the ideal speedup
will be a stairstep, rather than a straight line. Furthermore, if different loops are
parallelized in different directions, and each direction has a different number of
iterations associated with it, then the ideal speedup will consistently fall well below the
line for linear speedup.

The basis of this claim has to do with the number of iterations being a small-to-
moderate-sized integer. To see this, let us assume that we have only one loop to
parallelize and that the available number of processors equals the available parallelism.
Let us create a plot of performance vs. the number of processors used. As we increase
the number of processors being used, we will reach the point where all but one or two
of the processors have two iterations assigned to them, with the remaining processors)
having three iterations assigned to them. Add another processor, and all of the
processors have, at most, two iterations assigned to them, and the speed takes a
noticeable jump. Add additional processors, and nothing happens. As a result of adding
the additional processors, more and more of the processors only have one iteration
assigned to them, but as long as even one processor has two iterations assigned to it, the
speed will remain unchanged (in terms of the ideal speedup, on some real systems, the
speed may actually drop). Finally, when the number of processors equals the available
parallelism, one will get a significant jump in performance.

This effect can be clearly seen in the theoretical numbers in Figure 1 and Table 1.
Furthermore, if one looks at actual results that we have for the Implicit CFD code F3D,
one can see that at least on a well-designed system such as the SGI Origin 2000, this
effect really does exist (see Figure 2).

From the discussion in Example 1, one can see that assumptions regarding what constitutes

the ideal speedup can vary depending on the approach to parallelization. Additionally, since the use

of loop-level parallelism is primarily restricted to Shared Memory SMPs (as well as the now obsolete

SIMD systems), the predicted speedup can, at least, indirectly depend on the choice of system

architecture.

15 r

D. 10
Z)
Q
HI
HI
Q.
CO

5 -

■ i t ■ ■ ■ i

5 10
NUMBER OF PROCESSORS USED

15

Figure 1. Predicted Speedup for a Loop With 15 Units of Parallelism.

Table 1. Predicted Speedup for a Loop With 15 Units of Parallelism

No. of Processors Maximum Units of Parallelism
Assigned to a Single Processor

Predicted Speedup

1 15 1.000
2 8 1.875
3 5 3.000
4 4 3.750
5-7 3 5.000
8-14 2 7.500
15 1 15.000

6000

Q- 5000

o
X

Hi 4000
Q.

Cray C90
SGI Origin 2000 (32 processor system)
SGI Origin 200 (4 processor system)

_... .A-... SGI Origin 2000 (64 processor system)
Predicted performance
SGI Origin 2000 (128 processor system) r

(preproduction hardware and operating system j?

30 40 50 60 70
NUMBER OF PROCESSORS USED

Figure 2. Performance Results for the One-Million-Grid-Point Data Set.

3.2 Linear Speedup. Many people seem to be of the impression that the compilers are

producing excellent serial code. Therefore, all that they really need to worry about is getting good

linear speedup (or, at least, linear scaled speedup). A few people go even further and assume that

any good code will get linear speedup/scaled speedup and that the code will achieve approximately

the same percentage of peak on all RISC (or even RISC/CISC) based systems. Based on this train

of thought, one is left with the inescapable conclusion that unless the vendor's pricing is way out of

line, one should buy the system with the fastest processor possible (based purely on peak speed). In

general, these conclusions are supported by the published Linpack numbers.

The problem is that Linpack is an easily tuned code that, in general, gives a very high level of

performance on almost all HPC systems currently in production. If one compares the Linpack

numbers to those of other HPC benchmarks (e.g., the NAS Parallel Benchmarks), one will, in

general, see a poor level of correlation between the two sets of numbers. There are three main

reasons for this:

(1) Given poorly tuned code, few if any compilers will produce a highly efficient executable.

In general, poorly tuned code will result in performance levels that range from poor to fair.

The problem is compounded by the design decisions that all vendors make in designing

their systems. In some cases, these decisions can make it nearly impossible to produce

highly tuned code for some/many algorithms. Therefore, the actual performance can depend

dramatically (in some cases by a factor of 10 or more) on the skill of the programmer and

the choices made by the system designers.

(2) While some computational kernels (e.g., Linpack) are easily made to live out of cache, for

many other programs, that is not the case (especially if they are still written in a manner

which favors vector processors). In that case, the speed of the program is likely to correlate

strongly with how rapidly data can be moved between memory and the processor.

Unfortunately, for some systems, this may limit the program's performance to only a few

percent of peak (based on MFLOPS) [6].

(3) As the processors get faster, and assuming that one is able to maintain the performance as

a constant percentage of peak, then it becomes increasingly more difficult to obtain linear

speedup without increasing the amount of work assigned to each processor. The problem

here is that if one doubles the processor speed, while decreasing the number of processors

used by a factor of 2, it is far from clear that the system with the fastest processors is the

best system to buy. In particular, since systems with faster processors almost always cost

more per Peak MFLOPS, the system with the slower processors might actually be more cost

effective and just as fast (given the appropriate number of processors).

Therefore, we have seen that basing decisions purely on linear speedup (or even worse, the

assumption of linear speedup) can fail to properly predict the performance of a code-machine

combination for the second metric.

3.3 Maximum Speed. Is the fastest machine the best machine for the job? If one is a Grand

Challenge user, or alternatively a software developer primarily interested in pushing the boundaries

for really large jobs, then faster is certainly better. Once again, this can lead one to the conclusion

that one should only buy/use highly scalable systems with very fast processors and lots of memory

(although how much memory per processor can still be debated). However, such a decision can have

several penalties associated with it:

• The new machine might not meet the needs of all of the users (e.g., those interested in running

parametric studies involving huge numbers of serial jobs).

• Bigger machines tend to be harder and therefore more expensive to build. Jh general, the more

scalable the design is, the greater the cost per delivered (usable) MFLOPS is likely to be.

• Many users may not need to use huge numbers of processors. Alternatively, the users may

only be using large numbers of processors to satisfy their memory requirements. Therefore,

while many sites are likely to find that huge highly scalable systems can produce excellent

results for the second metric, they will produce far from optimal results for the third metric.

However, at many sites, the majority of the cycles are consumed by jobs using a small-to-

moderate percentage of the total available resources. Therefore, for the users at these sites, once the

system size has reached a certain point, there is little or no benefit (there may even be a large

penalty) from increasing the size of an individual system any further. In such a case, it is reasonable

to do a cost/benefit analysis comparing a single large system to multiple moderate-sized systems (this

is especially true when dealing with the metacenter concept, where some centers may go one way,

10

while others are free to go the other way, thereby ensuring that the needs of Grand Challenge users

continue to be addressed). This thought is discussed further in section 4.

4. What Is the Overall Turnaround Time for the Job?

The overall turnaround time is primarily the sum of the following values:

• Time spent waiting to start running (on many systems, this can be as long as a week or

longer).*

• The minimiim amount of time required for the program to execute (this is what one would see

on a dedicated system).

• Any degradation to the run time resulting from not running on a dedicated system (e.g.,

resulting from extra context switches and/or time spent sitting at spin locks).

• Time spent waiting for the operating system to schedule a job's time slice when running in a

time-sharing environment.

From this, one can see that the three things that matter are:

(1) Minimizing the time spent waiting for a job to start running.

(2) Ensuring that the minimum run time will more than meet the needs of most users.

(3) Mmimizmg/eliminating any sources of degradation to the run time that result from running

in a multiuser environment.

* Note: For users performing studies involving a large number of runs, it is generally best to define turnaround time
in terms of when the first job was submitted and when the last job starts to run.

11

In theory then, if the non-Grand Challenge jobs collectively need X amount of delivered

GFLOPS, with any one job requiring a minimum of Y MFLOPS to meet its performance

requirements, then one can buy any system/combination of systems that delivers X GFLOPS in

quantas of Y MFLOPS. One can then go out and buy the cheapest system that meets these

specifications.

The reality is frequently a bit different than that. First, one frequently has a fixed amount of

money to spend, so instead of buying the cheapest system, one will normally buy the largest complex

of systems one can afford. The second point is that flexibility in scheduling and use will frequently

translate into a cost savings that will allow one to run more jobs. In other words, if different jobs

use different numbers of processors, then it is probably best from a scheduling standpoint if the

smallest systems being considered are at least 2-3 * Y MFLOPS in size.

Another consideration is, How efficiently is the memory being used? On shared memory

systems, some jobs will be able to share a single pool of memory M MB in size. Running the same

job on a distributed memory architecture might then require replicating the data structures in the

local memory of every processor (this is a common practice for chemistry codes). As a result, when

using N processors, one must now buy N * M MB of memory. This can make it much cheaper to

run these jobs on a shared memory system, such as those made by SGI and SUN. Unfortunately, it

is not always clear if this savings will still be present when running on less main stream

architectures, such as the KSR1 or even the Convex Exemplar with its CTI cache.

Even when running a standard message-passing job, different users may wish to see different

amounts of memory per processor. If one equips all of the processors only with the largest amount

of memory possible, the throughput might suffer due to the decreased number of processors in the

system. Therefore, in a throughput oriented environment, it is probably best to equip different

groups of processors with different amounts of memory. Exactly how this should be accomplished

(especially when dealing in a metacenter type of environment) can be quite complicated (in part,

because politics will almost always be a factor in the final decision). While this discussion has

12

centered around memory vs. processors, there can be other resources (e.g., disk drives, I/O

controllers, and even software licenses) that can also be an important part of the picture.

5. Conclusion

We have seen that there can be a number of factors that decide which metric is most appropriate

in each circumstance. While many users will want to only report linear speedup, that is frequently

a metric of questionable value, hi particular, while one might be tempted to say that his or her metric

has nothing to do with the procurement decisions that this report keeps stressing, the truth is that

more often than not the metric will have everything to do with those decisions. If the decision

makers only see glowing reports, their conclusions may be unintentionally biased. If they see mostly

glowing reports and only a limited number of reports that stress the thornier issues, it can be all too

easy to ignore those issues. Therefore, any user who writes reports based solely on oversimplified

metrics runs the very real risk of leading management, and possibly even the entire industry, down

a path of uncertain value (at best).

13

INTENTIONALLY LEFT BLANK.

14

6. References

1. Dowd, K., and C. Severance. High Performance Computing: RISC Architectures, Optimization
& Benchmarks 2nd Edition, Sebastopol, CA: O'Reily & Associates, Inc., 1998.

2. Pressel, D. M, W. B. Sturek, J. Sahu, and K. R. Heavey. "How Moderate-Sized RISC-Based
SMPs Can Outperform Much Larger Distributed Memory MPPs." ARL-TR-2062, U.S. Army
Research Laboratory, Aberdeen Proving Ground, MD, October 1999.

3. Saini, S. (editor). NAS Parallel Benchmarks. NPB 1 Data. Electronically published at
http/science.nas.nasa.gov/Sofrware/^B/NPBlResults/index.html, 17 November 1996.

4. Fox, G. C, R. D. Williams, and P. C. Messina. Parallel Computing Works! San Francisco, CA:
Morgan Kaufmann Publishers, Inc., 1994.

5. Gustafson, J. L. "Reevaluating Amdahl's Law." Communications of the ACM, vol. 31, no 5,
pp 532-533, The Association for Computing Machinery, Inc., May 1988.

6. O'Neal, D., and J. Urbanic. "On Performance and Efficiency: Cray Architectures."
http://www.psc.edu/~oneal/eff7eff.html, Parallel Applications Group, Pittsburgh Supercomputing
Center, August 1997.

15

INTENTIONALLY LEFT BLANK.

16

Glossary

CFD

CISC

GFLOPS

High Level Languages

HPF

Low Level Languages

MB

MFLOPS

MPP

NASA

RISC

SMP

Computational Fluid Dynamics

Complicated Instruction Set Computer, an approach to processor
design that assumes that the best way to get good performance out of
a system is to provide instructions that are designed to implement
key constructs (e.g., loops) from high level languages.

Billion Floating Point Operations per Second

Computer languages that are designed to be relatively easy for the
programmer to read and write. Examples of this type of language are
Fortran, Cobol, C, etc.

High Performance Fortran

Computer languages that are designed to reflect the actual instruction
set of a particular computer. In general, the lowest level language is
known as Machine Code. Just slightly above machine code is a
family of languages collectively known as Assembly Code.

Million Bytes

Million Floating Point Operations per Second

Massively Parallel Processor

National Aeronautics and Space Administration

Reduced Instruction Set Computer, an approach to processor design
that argues that the best way to get good performance out of a system
is to eliminate the Micro Code that CISC systems use to implement
most of their instructions. Instead, all of the instructions will be
directly implemented in hardware. This places obvious limits on the
complexity of the instruction set, which is why the complexity had to
be reduced.

Symmetric Multiprocessor

17

INTENTIONALLY LEFT BLANK.

18

NO. OF
COPIES ORGANIZATION

DEFENSE TECHNICAL
INFORMATION CENTER
DTIC DDA
8725 JOHN J KTNGMAN RD
STE0944
FT BELVOIR VA 22060-6218

HQDA
DAMOFDQ
D SCHMIDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

OSD
OUSD(A&T)/ODDDR&E(R)
RJTREW
THE PENTAGON
WASHINGTON DC 20301-7100

DPTYCGFORRDA
US ARMY MATERIEL CMD
AMCRDA
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

NO. OF
COPIES ORGANIZATION

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRLDD
2800 POWDER MILL RD
ADELPHI MD 20783-1197

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CS AS (RECORDS MGMT)
2800 POWDER MILL RD
ADELPHI MD 20783-1145

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CILL
2800 POWDER MILL RD
ADELPHJ. MD 20783-1145

ABERDEEN PROVING GROUND

DIRUSARL
AMSRL CI LP (BLDG 305)

INST FOR ADVNCD TCHNLGY
THE UNTV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA
17320 DAHLGRENRD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5100

US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MADNMATH
THAYERHALL
WEST POINT NY 10996-1786

19

NO. OF
COPIES ORGANIZATION

1 PM CHSSI
JOHN GROSH
SUITE 650
1010 N GLEBE ROAD
ARLINGTON VA 22201

1 RICE UNIVERSITY
MCHNCL ENGRNG AND MTRLS SCI
MAREK BEHR
MS 321
6100 MAIN STREET
HOUSTTNTX 77005

1 COMMANDER
CODE C2892
CLINT HOUSH
1 ADMINISTRATION OR
CHINA LAKE CA 93555

2 WLFIMC
STEPHEN SCHERR
BILL STRANG
BLDG 450
2645 FIFTH ST SUITE 7
WPAFB OH 45433-7913

1 NSWC
A B WARDLAW
CODE B44
SILVER SPRING MD 20903-5640

1 NAVAL RSRCH LAB
CODE 6400 JAY BORIS
4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

1 NAVAL RSRCH LAB
CODE 6410
RAVI RAMAMURTI
WASHINGTON DC 20375-5344

1 ARMY AEROFLIGHT
DYNAMICS DIRECTORATE
ROBERT MEAKIN
MS 258 1
MOFFETT FIELD CA 94035-1000

1 NAVAL RSRCH LAB
CODE 7320
JW MCCAFFREY JR
HEAD OCEAN DYNAMICS AND
PREDICTION BRANCH
STENNIS SPACE CENTER MS 39529

NO. OF
COPIES ORGANIZATION

1 NAVAL RSRCH LAB
GEORGE HEBURN
RSRCH OCEANOGRAPHER CNMOC
BLDG 1020 RM 178
STENNIS SPACE CENTER MS 39529

1 US AIR FORCE WRIGHT LAB
WL FIM JOSEPH J S SHANG
2645 FIFTH STREET STE 6
WPAFB OH 45433-7912

1 USAF PHILIPS LAB
OLACPLRKFE
CPT SCOTT G WJJERSCHKE
10 EAST SATURN BLVD
EDWARDS AFB CA 93524-7680

1 USAE WATERWAYS
EXPERIMENT STATION
CEWES HV C JEFFREY P HOLLAND
3909 HALLS FERRY ROAD
VICKSBURG MS 39180-6199

1 USARMYCECOMRD&ECTR
AMSEL RD C2
BARRY S PERLMAN
FT MONMOUTH NJ 07703

1 SPAWARSYSCEN (D4402)
ROBERT A WASILAUSKY
BLDG 33 RM 0071A
53560 HULL ST
SAN DIEGO CA 92152-5001

1 US AIR FORCE RESEARCH LAB
INFORMATION DIRECTORATE
RICHARD W LINDERMAN
26 ELECTRONIC PARKWAY
ROME NY 13441-4514

1 US AIR FORCE RESEARCH LAB
PROPULSION DIRECTORATE
LESLIE PERKINS
5 POLLUX DR
EDWARDS AFB CA 93524-7048

1 AIR FORCE RESEARCH LAB/DEHE
ROBERT PETERKIN
3550 ABERDEEN AVE SE
KIRTLAND AFB NM 87117-5776

20

NO. OF
COPIES ORGANIZATION

1 SPACE & NAVAL WARFARE SYS CTR
CODE D7305 KEITH BROMLEY
BLDG 606 RM 325
53140 SYSTEMS ST
SAN DIEGO CA 92152-5001

1 UNVRSTY OF MINNESOTA
DEPT OF ASTRONOMY
PROF P WOODWARD
356 PHYSICS BLDG
116 CHURCH STREET SE
MINNEAPOLIS MN 55455

1 RICE UNIVERSITY
MCHNCL ENGRNG AND MTRLS SCI
TAYFUN TEZDUYAR DEPT CHRMN
MS 321 6100 MAIN ST
HOUSTON TX 77005

1 DIRECTOR
ARMY HIGH PERFORMANCE
COMPUTING RSRCH CTR
BARBARA BRYAN
1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN 55415

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND

15 DIRUSARL
AMSRLCI

N RADHAKRISHNAN
AMSRL CIH

C NIETUBICZ
AMSRL CI HA

WSTUREK
A MARK
R NAMBURU

AMSRL CI HC
D PRESSEL
D HISLEY
C ZOLTANI
APRESSLEY
TKENDALL
PDYKSTRA

AMSRL WMBC
HEDGE
JSAHU
KHEAVEY
P WEINACHT

1 DIRECTOR
ARMY HIGH PERFORMANCE
COMPUTING RSRCH CTR
GRAHAM V CANDLER
1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN 55415

1 NAVAL CMND CONTROL AND
OCEAN SURVEILLANCE CTR
L PARNELL HPC CRDNTR & DIR
NCCOSC RDTE DIV D3603
49590 LASSING ROAD
SAN DIEGO CA 92152-6148

21

INTENTIONALLY LEFT BLANK.

22

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for mis collection ol Information Is estimated to average 1 hour per response, Including the «me lor reviewing Instruction», «arching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this
collection of Information, Including suggestions lor reducing this burden, to Washington Headquarters Services, Directorate lor Information Operations and Reports, 1215 Jefferson
DavK Hlohwav. Suit» 1?04 Arlington. V* tt»20?-4.-|0;. and to Hi. Office ol Man.aem.nl and Budoet. Paperwork Reduction PrOleglWMIffll WaylnglOT. Iff »8».

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

January 2000

3. REPORT TYPE AND DATES COVERED

Final, Jan 96-Dec 96
4. TITLE AND SUBTITLE

Performance Metrics for Parallel Systems

6. AUTHOR(S)

D. M. Pressel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

9UHMCL

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2145

10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

One frequently needs to compare the performance of two or more parallel computers, but how should this be done?
The most straightforward way to do this would be to rely upon a suite of benchmarks. Unfortunately, there are many
problems and limitations with this approach. Therefore, one is frequently forced to rely upon a combination of
approaches. Unfortunately, many of the alternative approaches are all too frequently based on excessively simplistic
approximations and extrapolations. This report discusses some of these issues so that the problems they can cause may
be avoided in the future.

14. SUBJECT TERMS

supercomputer, high performance computing, performance metrics, parallel programming

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

IS. NUMBER OF PAGES

23
16. PRICE CODE

NSN 7540-01-280-5500 23

20. LIMITATION OF ABSTRACT

UL
9)

298-102
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

INTENTIONALLY LEFT BLANK.

24

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2145 (Pressel) Date of Report January 2000

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will

be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.).

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate.. .

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,

technical content, format, etc.)

Organization

CURRENT Name E-mail Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old

or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001 .APG.MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL Cl HC
ABERDEEN PROVING GROUND MD 21005-5067

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

